Seat No.	:	

JA-101

January-2021

B.B.A., Sem.-V

CC-304: Operations Research & Q.T.

Time : 2 Hours] [Max. Marks : 50

Instructions: (1) All Questions in Section - I carry equal marks.

- (2) Attempt any two questions in Section I.
- (3) Question 5 in Section II is compulsory.

SECTION - I

1. (A) What is LPP? State its uses.

10

- (B) Two types of hens are kept in a poultry farm. A type of hen costs ` 20 each and type of hen costs ` 30 each. A type of hen lays 4 eggs per week and B type of he lays 6 eggs per week. At the most 40 hens can be kept in the poultry. Not more than ` 1050 is to be spent on the hens. How many hens of each type should be purchased to get maximum eggs?
- 2. (A) Solve the fellowing transportation problem by NW Rule, Matrix min**io**na method :

Source	A	В	С	D	Supply
X	15	18	22	16	30
Y	15	19	20	14	40
Z	13	16	23	17	30
Demand	1 20	20	25	35	100

(B) Obtain basic feasible solution by Vogel's approximation method. Also obtain its optimum solution.

Source	Α	В	С	Supply
Х	6	4	14	10
Y	14	10	4	7
Z	4	10	8	8
Demand	12	8	5	

JA-101 1 P.T.O.

3. (A) Draw PERT diagram. Also calculate EST, EFT, LST, LFT and Float Time. State its Critical Path.

Activity	1-2	1-3	1-4	2-3	2-6	3-5	3-6	4-5	5-6	5-7	6-7
Duration	0	7	2	6	0	6	1	12	0	6	0
(Months)	0	/	2	U	0	U	4	12	U	U	0

(B) Draw a PERT diagram for given details. Determine the critical path and to expected duration of completion of the entire project.

•		•	
Activity	Optimistic	Most likely	Pessimistic
Node	Time	time	time
1-2	2	4	6
1-3	6	6	6
1-4	6	12	24
2-3	2	5	8
2-5	11	14	23 🧷
3-4	15	24	45
3-6	3	6	9
4-6	9	15	27
5-6	4	10	16

4. (A) Apply the principle of dominance in Game theory and solve the Adjoining game

	MI	\ 0	Y		
	90	1	2	3	4
	1	8	10	9	14
Χ	2	10	11	8	12
	3	13	12	14	13

(B) Solve the following assignment problem for minimization: 10

	Α	В	С	D	Е
Р	4	10	12	18	17
Q	7	16	16	22	18
R	8	6	9	19	21
S	11	12	15	12	13
Т	9	14	19	18	14

10

5.

Do as Directed: (Any ten)

(1) Hungarian Method is used to solve(a) A transportation problem

	(b) A LP problem		
	(c) A travelling salesman pro	oblem	
(2)	(d) Both (a) and (b)		
(2)	In a zero-sum game,	a ather lesses	
	(a) what one player wins, the	winnings if the game is played r	nany timos must h
	zero.	willings if the game is played if	nany times must b
		erson has an equal chance of wir	nning.
	(d) long-run profits must be		9.
(3)	In the network shown in Fig.,		
	3 3 4	5 2 6	
	1 2 2 3	CO.	
	(a) 1-2-3-4-5-6 (b)	1-2-4-5-6	
		1-2-4-3-5-6	
(4)	Every LPP is associated with a		
	(a) Primal (b)	Dual	
	(c) Non-linear programm (nd)	None	
(5)		peforeWorld War II in Britainwith	
		ientists to study the strategic an	d tactical problems
	involved in military operation		
(6)		False	
(6)		ations research is that it ofte	n ignores the hui
	element in the production pro		
(7)		False	
(7)		the phase of OR methodology?	
	(a) Formulating a probler(b)(c) Establishing controls (d)		
(8)		wn as an ability to win a war with	out really going in
(0)	to	wir as an asincy to win a war with	loac really going in
		Fighting	
		Both (a) and (b)	
(9)	OR has a characteristics that		
	(a) Scientists (b)	Mathematicians	
	(c) Academics (d)	All of the above	
(10)	What enables us to determine	e the earliest and latest times for	each of the event
		ps in the identification of the cri	tical path ?
	(a) Programme Evaluatio(b)		
	(c) Deployment of resour(coe)s	Both (a) and (b)	
JA-101		3	P.T.O.

Download all NOTES and PAPERS at StudentSuvidha.com

(11) Graphic	cal optimal value for	^ Z (can be obtained from
(a) Co	rner points of feasib	ole i	region
(b) Bo	th (a) and (c)		
(c) Co	rner points of the so	olut	ion region
(d) No	ne of the above		
(12) In game	e theory, the outcon	ne (or consequence of a strategy is referred to as the
(a) pa	yoff (b)	penalty
(c) rev	vard (d)	end-game strategy.
(13) If there	were n workers & n	ı jol	bs, there would be
(a) n!	solutions (b)	(n-1)! solutions
(c) (n!)n solutions (d)	n solutions
(14) In a tra	nsportation problem	1, W	then the number of occupied routes is less than th
numbe	r of rows plus the ກເ	umk	per of columns -1, we say that the solution is :
(a) Un	balanced (b)	Infeasible
(c) Op	timal (d)	Degenerate
(15) Which	of the following me	eth	ods is used to verify the optimality of the cui
	n of the transportation		•
• •	dified distribution m	neth	hod
` '	ast cost method		
	gel's approximation	me	ethod
` '	of the above		
		ıal	to total demand in a transportation problem,
•	n is said to be		
(a) Ba		•	Unbalanced
			None of the above
			on problem with 'm' rows (supplies) & 'n' columns
			ber of positive allocations are
(a) m		•	m*n
	· ·	,	m+n-1
) "b	alance" an assignment or transportation problem.
• •	stinations; sources		
	its supplied; units d		
	_		mall cost coefficients
	mmy rows; dummy		
_			kimization, the objective is to maximize
(a) Pro			Optimization
(c) Co	•	a)	None of the above
(20) Total Fl		h١	ICII ECII
			LSij - ESij
(c) Bo	th (a) and (b) (a)	none or given

JA-101